Quantum computing promises to deliver major advances in a wide variety of fields including simulations of the natural world, virtual quantum experiments, quantum cryptography, data communication systems, and new pharmaceutical drug research and design.
These new and exciting research frontiers in quantum computing rely on two hallmarks of quantum physics: the superposition of states and quantum interference.
Montana Instruments has developed a line of cryogenic products to meet the needs of the quantum computing industry for research and development, production testing, and critical quantum computer infrastructure. There are multiple active architectures under consideration for the realization of a scalable quantum computer. The most promising candidates are those utilizing photonics, spin/quantum dots, superconducting circuits, and trapped ions.
Montana Instruments has overcome the cryogenic barriers to entry for ion trap, photonic, and superconducting circuit research and development. We've done this by helping alleviate the following common experimental challenges:
A high vacuum, low vibration, and stable cryogenic environment are required to prevent any unwanted excitation of the qubit state. Superior optical access (low working distance and high numerical aperture) for spatially resolved laser excitation and high collection efficiency fluorescent readout is also necessary for trapped ions and some spin/quantum dots.
Low vibrations are key to preventing energy transfer to qubits and distortion of the quantum state.
Cryogenic environments minimize thermal excitation of qubits. <10mK temperature stability is important to minimize thermal excitation.
A low working distance objective with a high numerical aperture (0.9 NA, for example) provides a narrow excitation spot for individual trapped ions and provides high collection efficiency. Our objective is temperature controlled to virtually eliminate drift. This eliminates the need for frequent realignment and maximizes data collection time.
Additional window ports may be used to laser ablate (generate the ions) or laser cool (prepare the quantum states). Our cryogenic systems can be configured with multiple side windows and a top window. In addition, the availability of larger sample spaces make it easy to address the sample from multiple incident angles.
Many electrical feedthroughs may be required to either generate the RF trapping potential or operate the superconducting circuit. Our base panels can be used to add low frequency/DC wires in addition to coaxial wires for low loss and higher frequency signal (up to approximately 20GHz). The sample space is kept uncluttered through the use of specially designed low thermal heat load cryogenic ribbon cables.
Molecular and atomic collisions can excite qubits out of their quantum state or completely knock an ion out of the trap, destroying the quantum crystal. Our integrated charcoal cryo-pumps enable high vacuum operation for months at a time.